

BULLETIN NO, 35

A STUDY

OF BASE AND BEARING PLATES FOR COLUMNS AND BEAMS

BY
N. CLIFFORD RICKER

UNIVERSITY OF ILLINOIS

ENGINEERING EXPERIMENT STATION

URBANA, ILLINOIS
PUBLISHED BY THE UNIVERSITY

HE Engineering Experiment Station was established by action of the Board of Trustees December 8, 1903. It is the purpose of the Station to carry on investigations along various lines of engineering, and to study problems of importance to professional engineers and to the manufacturing, railway, mining, constructional and industrial interests of the state.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff, and with the Director determine the character of the investigations to be undertaken. The work is carried on under the supervision of the Staff; sometimes by a research fellow as graduate work, sometimes by a member of the instructional force of the College of Engineering, but more frequently by an investigator belonging to the Station corps.

The results of these investigations are published in the form of bulletins, which record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions and governmental testing departments.

The volume and number at the top of the title page of the cover refer to the general publications of the University of Illinois; above the title is given the number of the Engineering Experiment Station bulletin or circular, which should be used in referring to these publications.

For copies of bulletins, circulars or other information, address the Engincering Experiment Station, Urbana, Illinois.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

A STUDY OF BASE AND BEARING PLATES FOR COLUMNS AND BEAMS

By N. Clifford Ricker, Professor of Architecture

CONTENTS

Page
I. Introduction 2
II. Limit of Safe Pressure of Plate on Masonry 2
III. Maximum Safe Fiber Stress in Metal of Plate 3
IV. Common Formulas 4
V. Results of Tests by C. R. Dick. 8
VI. New Formulas. 12
VII. Resultant Bending Moment Acting about Fracture Line 13
VIII. Resistance Moment of Fracture Section 14
IX. Method of Approximation. 17
X. Complete Formulas for Plates of Uniform Thickness. 20
XI. For Plates of Tapered Thickness 24
XII. Graphical Tables. 25
XIII. Table for Dimensions of Base Plates 25
XIV. Table for the Factor $\sqrt{\frac{3 P}{B}}$ 27
XV. Tables for Plates of Uniform Thickness 29
XVI. Additional Examples of the Use of the Tables 32

I. Introduction

The primary object of this study has been to produce a series of accurate formulas and tables for the different forms and materials of base and bearing plates. These formulas are required to be as simple and as easily applied as possible and to be in accordance with the local building ordinances of the larger cities in the United States.

A secondary purpose has been to devise a similar series of formulas based on the common theory of the fracture of such plates and to check the accuracy of these common formulas by experimental tests of a series of plates designed in accordance with such formulas. A number of typical plates were so designed and tested in 1907 by Mr. C. R. Dick, B. S. in Architectural Engineering, and the results were discussed in his thesis.

Up to the present time, very little study of theory and no experimental research appear to have been devoted to these plates. Even the German writers usually give incorrect theories with formulas based thereon, formulas which give erroneous dimensions of base plates.

II. Limit of Safe Pressure of Plate on Masonry

The maximum safe pressure of the plate on the masonry beneath it varies greatly, according to the nature and the resistance of this material; the requirements of the city building ordinances also differ considerably for the same kind of masonry. These requirements seem to be based upon local customs and not on actual experimental tests. Examples of such maximum safe pressures are here quoted from the ordinances of New York, Chicago and Washington, D. C., selected as representative cities, and these are further compared with the values given in Kidder's Pocket Book. (Table 1.)

Therefore this maximum safe pressure of the plate on masonry appears to vary between 70 and 1000 pounds per square inch, the larger value being allowed for truly dressed large blocks of stone. The value to be employed must be taken in accordance with the local building ordinance.

Table 1

Safe Pressures on Masonry in Pounds per Square Inch
Masonry N.Y. Chicago Wash'ton Kidder
Granite 173.61 1000-2400 1000
Limestone 173.61 700-2300

Sandstone 173.61 400-1600 400-700
Dimension stone, rough.... 138.89
Rubble in portland cement. . 138.89 $140 . \quad 150-200$
Rubble in natural cement... 111.11 111.
Rubble in cement and lime. 97.22 97.
Rubble in lime............. 94.44 70.
Brickwork in portland cement. 208.33 173.61 250 . 150-250
Brickwork in natural cement. 125. 208.
Brickwork in cement and lime. 159.72 160.
Brickwork in lime......... 111.11 90.28 111. 100-120
Concrete in portland cement 208.33 173.61 $\begin{array}{lllll}208-230 & 200 .\end{array}$
Concrete in natural cement. 111.11 111-125

III. Maximum Safe Fiber Stress in Metal of Plate

This maximum fiber stress in pounds per square inch occurs at either top or bottom of a plate of uniform thickness, or at the bottom of a cast-iron plate of tapered thickness. It must not exceed the intensities given in the following table, which are almost uniformly adopted throughout the United States.

Table 2
Maximum Safe Fiber Stress in Plates

Metal	N. Y.	Chicago	Wash'ton	Kidder
Steel, compression..............	16000	16000	16000	16000
Steel, tension................	16000	16000	16000	16000
Wrought Iron, compression.....	12000	12000	12000	12000
Wrought Iron, tension.........	12000	12000	12000	12000
Cast Iron, compression.........	16000	10000	16000	$\ldots .$.
Cast Iron, tension.............	3000	2500	3000	$\ldots .$.

Evidently the maximum tensile stress in cast-iron permitted in Chicago might safely be increased from 2500 to 3000 pounds per square inch, which is permitted in about one-half the cities in the United States.

IV. Common Formulas

The ordinary formulas for base plates are usually empirical (Kidder) or they are otherwise based on the theory that the line of fracture of a base plate is a stra:ght line tangent to the exterior of the foot of the column standing on the plate (Kohnke). In accordance with this theory, a series of formulas was deduced and later published in the Handbook of the Chicago Architects' Business Association. The essent:al formulas are the following:

A. For Steel Plates of Uniform Thickness

Let $p=$ maximum safe pressure of plate on masonry in 1 b . per sq. in.
$k=$ perpend:cular distance in inches from column to edge of plate.
$t=$ thickness of plate required, in inches.
(a) For square plates (Fig. 1)

Fig. 1
The line AB (Fig. 1) is the theoretical fracture line.
Then

$$
\begin{equation*}
t=\frac{k}{40} \sqrt{\frac{p}{10}} \tag{1}
\end{equation*}
$$

(b) For octagonal plates (Fig. 2)

Fig. 2
The segment $A D B$ may be divided into triangles, when its center of gravity C is easily found by graphical methods. (See Graphic Statics.)

Let $l=$ perpendicular distance in inches from C to line of fracture $A B$.
$b=$ length in inches of line of fracture.
$a=$ area in square inches of the segment $A D B$ outside the line $A B$.

Then

$$
\begin{equation*}
t=\frac{1}{40} \sqrt{\frac{3 a p l}{5 b}} \tag{2}
\end{equation*}
$$

(c) For circular plates (Fig. 3)

Fig. 3
Join the ends A and B of the chord fracture line with the center O by the radii $A O, O B$, and draw $O D$ perpendicular to $A B$.

Let $\beta=$ angle $A O B$ in degrees between radii $A O, B O$.
$A=$ area in square inches of the entire circle of the plate.
$b=$ length in inches of chord fracture line $A B$.
$R=$ external radius of end of column in inches.
Then $\frac{A \beta}{360}=$ area of the sector $A D B O$ in square inches. $\frac{b R}{2}=$ area in square inches of triangle $A B O$.

Hence $\quad \frac{\mathrm{A} \beta}{360}-\frac{b R}{2}=\mathrm{a}=$ area in square inches of segment $A D B$.
Also $\quad \frac{b^{3}}{12 a}=$ distance in inches from center O to center of grav-
Hence $l=\frac{b^{3}}{12 a}-R=$ perpendicular distance in inches from C to
Finally,

$$
\begin{equation*}
t=\frac{1}{40} \sqrt{\frac{3 a p l}{5 b}} \tag{3}
\end{equation*}
$$

B. For Cast-iron Plates of Tapered Thickness

Such plates are of uniform thickness only beneath the end of a column or beam, and are flat on the under side, but are beveled off on top from column to edge of the plate. These edges are usually made at least $3 / 8$-in. thick, and a good rule is to make the edge one-fourth the thickness at the middle. These formulas are deduced for sharp edges or a trapezoidal fracture section, and they are therefore only approximate for plates with thick edges.
(a) For square plates (Fig. 4)

Fig. 4
l at $k=$ projection of the edge of the plate outside the column, measured in inches and perpendicular to the edge.
$k^{\prime}=$ side in inches of square on top of plate and tangent to column. The line of fracture $A B$ is parallel to a side.
The thickness in inches of plate at middle is then given by the formula

$$
\begin{equation*}
t=\frac{k}{50} \sqrt{\frac{6 p\left(k+\frac{k^{\prime}}{2}\right)}{k+k^{\prime}}} \tag{4}
\end{equation*}
$$

(b) For octagonal plates (Fig. 5)

Fig. 5

In the manner already explained for the octagonal steel plate may be found the area a of the segment $A D B$, its center of gravity C, and the distance l.

The thickness in inches at the middle is then approximately

$$
\begin{equation*}
t=\frac{1}{50} \sqrt{\frac{12 a p l}{b}} \tag{5}
\end{equation*}
$$

(c) For circular plates (Fig. 6)

Fig. 6

As for circular steel plates:
$a=\frac{A \beta}{360}-\frac{b R}{2}=$ area in square inches of segment $A D B$.
$l=\frac{b^{3}}{12 a}-R=$ perpendicular distance in inches from C to line
$A B$. The actual fracture section lying between a very flat hyperbola and its chord, a parabola may be substituted therefor without material error.
The thickness at middle is given by the formula

$$
\begin{equation*}
t=\frac{1}{50} \sqrt{\frac{35 a p l}{8 b}}=\frac{1}{23.9} \sqrt{\frac{a p l}{b}} \tag{6}
\end{equation*}
$$

V. Results of Tests by C. R. Dick

Employing the preceding formulas, Mr. C. R. Dick designed in 1907 a series of square, octagonal and circular plates of steel and of cast iron, and afterwards tested them in the testing laboratory of the Univers:ty.

Each plate had a bottom area of 400 sq. in. and transmitted the very moderate safe pressure of 50 lb . per sq. in., making a total maximum safe pressure of 20000 lb . for the entire plate. The thickness of each plate was made such that the maximum safe fiber stress in the fracture section produced by this maximum safe pressure should not exceed 16000 lb . for steel or 2500 lb . for cast iron in tension, as required by the Chicago ordinance.

The distribution of the pressure of the plate uniformly over the lower surface required some form of elastic cushion between the plate itself and the very rigid bed of the test:ng machine. A cushion was composed of several folded blankets, a folded woollen comfortable and two thicknesses of rubber packing, but it failed under moderate pressures, though not sufficiently to seriously injure the plates except in

Fig. 7
the case of the cast iron. (Fig. 7). A cushion of dry sand forming a layer 2 inches thick was enclosed within a steel hoop a little larger than the plate, but the sand packed irregularly and failed to transmit a uniform pressure. A satisfactory cushion was finally composed of 11 layers of oak p:eces, cut $24 \times 3 \times 7 / 8 \mathrm{in}$. piled in crosswise layers, leaving $1 / 4 \mathrm{in}$. spaces between the pieces to permit expansion. (Fig. 8). This cushion proved to be sufficiently elastic and also able to sustain pressures sufficient to break the cast-iron plates. Indeed it later supported without great injury a load of 620000 lb ., or 31 times the safe pressure for which the plates were designed. Any injured pieces could easily be replaced in order to maintain the efficiency of the cushion.

Fig. 8
Pressure was applied to the flat top of the plate by a hollow cylindrical cast-iron hub 12 inches long, 4 inches external diameter, and $3 / 4$ inch thickness of metal. Since the plates were not planed on top (which is seldom done in practical construction), several thicknesses of heavy manila paper were inserted between the hub and the plate. On the hub rested the pressure head of the testing machine, while the elastic cushion was placed between the plate and the bed of the machine. Thus the conditions of the test fairly represented those existing in actual structures, where the masonry yields somewhat and is not absolutely rigid like the bed of the testing machine.

The square steel plates were ${ }^{13} /{ }_{16}$ in. thick; the octagonal and circular steel plates were $3 / 4 \mathrm{in}$. thick. The upward deflections of their outer edges were measured at 4 points to $1 / 1000$ in., and each plate was gradually loaded to 120000 lb ., or with six times its maximum safe load. This produced an average maximum deflection of 0.29 in ., leaving a permanent set averaging 0.18 in ., when the pressure was removed. The plate was thus dished, but no failure or cracks were produced.

These results show that a steel base plate bends more than one of cast iron, and that it does not so uniformly distribute its load over the masonry beneath it as a more inflexible cast-iron plate. It follows that the latter plate is preferable for the purpose. Empirical rules usually make steel plates one-half the thickness of cast-iron plates supporting equal loads.

Mr. Dick deduced from his experiments the following conclusions for steel plates.
"1. The (preceding) formulas for the design of steel base plates are entirely safe.
2. The limit of 16000 pounds fiber stress permitted by the Chicago ordinance is perhaps too large, since marked deflections take place rapidly after this fiber stress has been exceeded.
3. Steel plates projecting more than two diameters of the hub (or column) beyond it, should be designed for deflection, or it would be better to use a cast-iron plate for large loads.
4. The circular is the most economical shape for a bearing plate."

The cast-iron plates were beveled on top from the hub to a uniform thickness of $3 / 8 \mathrm{in}$. at the edges, the bottom being a plane surface. They were cast and tested in sets of threes of each form. The square plates (Fig. 9) were 2% inches thick beneath the hub; the octagonal plates (Fig. 10) were $21 / 8$ inches, while the circular plates (Fig. 11) were $2{ }^{3} /{ }_{18}$ inches. All cast-iron plates were tested to fracture, which occurred with the load indicated in the figures for each plate. Plates $A 1, B 1$ and $C 1$ were tested on the cushion of folded blankets, etc. (Fig. 7), which crushed and distributed the pressure unequally, the plate thus failing under a smaller load. The other plates were tested on the wooden cushion, Fig. 8.

C3. Wood Cushion. $1 / 7500 \mathrm{lbs}$.
Fig. 10

B3. Wood Cushion
275500 lbs.
Fig. 11

From the results of these tests, Mr. Dick deduced the following conclusions for cast-iron plates.
"1. The (preceding) formulas for the design of cast-iron plates may be used with safety.
2. A greater fiber stress than that permitted by the Chicago ordinance could be used with safety.
3. Cast iron is better adapted for base plates than steel, as it gives a uniform distribution of the load over the bearing area for a greater range of loading.
4. Cast iron will not deteriorate as rapidly as steel when in a damp place, and for this reason cast iron should be preferred."

Mr. Dick likewise notes that the fracture lines pass through the center of each plate and are not tangent to the hub, as assumed by the preceding formulas. He also suggests that assuming the fracture line through the center of each plate, the resultant moment of the pressures about this line may be found and equated to the resistance moment of the fracture section. But since this procedure would render the formulas much more complex and increase the labor of designing a plate, the extra labor would not be repaid, being unnecessary for safety.

The direction of the fracture line in the plates tested was sometimes changed by the influence of side cracks, probably due to slight irregularities in the distribution of the pressure, or perhaps to slight flaws in the castings.

VI. New Formulas

The new formulas proposed are based on the following principles, the result of a theoretical investigation and of the nature of the failures of the plates.

1. The line of fracture is a shorter diameter of the plate.
2. The breaking moment about this line is greater than that about a line tangent to the column or hub.
3. The weight of a base plate is very small in proportion to the load transmitted by it, and it may safely be neglected in the formulas.
4. The pressures at the top and the bottom of the plate are then equal and act in opposed directions with unequal lever arms.
5. Their moments about the fracture line being necessarily unequal, their resultant maximum safe moment is equal to the maximum safe re,isting moment of the fracture section of the plate.

RICKER-STUDY OF BASE AND BEARING PLATES

VII. Resultant Bending Moment Acting About Fracture Line

Let $A=$ total area of the plate in square inches;
$P=$ total load in pounds transmitted by it;
$L^{\prime}=$ perpendicular distance in inches from fracture line to center of upward pressures on one-half the area of the plate;
then $L^{\prime}=0.25 \times$ length in inches of a wall or bearing plate;
$=0.25 \times$ side of a square plate;
$=0.2187 \times$ inscribed diameter of octagonal plate ;
$=0.2122 \times$ diameter of circular plate.
Let $L^{\prime \prime}=$ perpendicular distance in inches from fracture line to center
of downward pressures on one-half the area of the plate;
then $L^{\prime \prime}=0.25 \times$ width of a beam or girder on a bearing plate;
$=0.25 \times$ side of a solid square post or column;
$=0.2187 \times$ diameter of solid octagonal post or column;
$=0.2122 \times$ diameter of solid cylindrical post or column.
Let $R=$ radius of outer circle inscribed in cross section of hollow square or cylindrical column;
$r=$ radius of inner circle inscribed in hollow square or round column ;
Then $L^{\prime \prime}=0.500 \frac{R^{3}-r^{3}}{R^{2}-r^{2}}$, for a hollow square coiumn.
Limiting val'res are $\left\{\begin{array}{l}0.500 R \text { for a solid column. } \\ 0.750 R \text { for a very thin }\end{array}\right.$
Also $\quad L^{\prime \prime}=.424 \frac{R^{3}-r^{3}}{R^{2}-r^{2}}$, for a hollow cylindrical column.
Limiting values are $\left\{\begin{array}{l}.424 R \text { for a solid column. } \\ .637 R \text { for a very thin shell column. }\end{array}\right.$
These values of $L^{\prime \prime}$ may readily be found by calculation, but much more easily by the aid of the graphical table, Fig. 12.

Fig. 12

Example. Assume a hollow cylindrical column, 12 in. external and 9 in. internal diameter.

Then

$$
\frac{r}{R}=\frac{4.5}{6.00}=0.75 .
$$

By the table, Fig. 12, $L^{\prime \prime}=0.56 R=3.36$ in.

VIII. Résistance Moment of Fracture Section

The fracture section is a plane vertical section through the fracture line.
Let $f=$ maximum safe fiber stress in pounds per square inch.
$B=$ length in inches of fracture section.
$t=$ thickness in inches of plate at center under column.
$I=$ moment of inertia of the fracture section.
$c=$ vertical distance in inches from horizontal neutral axis to bottom of fracture section.
Then $\frac{f^{\prime} I}{c}=$ maximum safe resistance moment of fracture section in general.
(a) For a rectangular fracture section of plate of uniform thickness, $\frac{f B t}{6}=$ maximum safe resistance moment.
(b) For tapered section with sharp edges. (Fig. 13.)

Let $k=$ length in inches of horizontal top of section under column or diameter of column.

Fig. 13
$n k=$ length in inches of each tapered portion of the fracture section.
$B=k(2 n+1)=$ length in inches of fracture section.
$A^{\prime}=k t=$ area in square inches of rectangle in Fig. 13.
$A^{\prime \prime}=n k t=$ area in square inches of both triangles in Fig. 13.
$d^{\prime}=\frac{n t}{6(n+1)}=$ vertical distance in inches from center of gravity of rectangle to neutral axis of fracture section, Fig. 13.
$d^{\prime \prime}=\frac{t}{6}-\frac{n t}{6(n+1)}=$ vert:cal distance from center of combined triangles to neutral axis of fracture section, Fig. 13. $c=d^{\prime \prime}+\frac{t}{3}=$ vertical distance in inches from neutral axis to bottom of fracture section.
Also $\quad I=\frac{k t^{3}}{12}+k t d^{\prime 2}=$ moment of inertia for rectangle.
$I=\frac{n k t^{3}}{18}+n k t d^{\prime \prime 2}=$ moment of inertia for combined triangles.
Finally $\quad \frac{f I}{c}=\frac{f k}{c}\left[\frac{t^{3}}{12}+t d^{\prime 2}+\frac{n t^{3}}{18}+n t d^{\prime \prime 2}\right]=$ safe moment of resistance of fracture section of the plate.
(c) For tapered section with thick edges (Fig. 14)

Fig. 14
Divide the fracture section into two rectangles and two triangles as in the figure.
Let $t=$ thickness in inches at the middle of the plate.
$t^{\prime}=$ thickness in inches at the edges.
$t^{\prime \prime}=t-t^{\prime}=$ thickness of the taper in plate.
Then $A^{\prime}=k t^{\prime \prime}=$ area in square inches of the upper rectangle.
$A^{\prime \prime}=n k t^{\prime \prime}=$ area in square inches of combined triangles.

$$
\begin{aligned}
& A^{\prime \prime \prime}=(2 n+1) k t^{\prime}=\text { area in square inches of lower rectangle. } \\
& e=\frac{n t^{\prime \prime}}{6(n+1)}=\begin{array}{l}
\text { vertical distance in inches from center of grav- } \\
\quad \text { ity of upper rectangle to joint center of grav- } \\
\text { ity of this rectangle and combined triangles. }
\end{array} \\
& b=\left(\frac{t}{2}-e\right) \frac{A^{\prime \prime \prime}}{A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}} \\
&=\left(\frac{t}{2}-e\right)\left[\frac{(2 n+1) t^{\prime}}{\left[\begin{array}{l}
t^{\prime \prime}+n t^{\prime \prime}+(2 n+1) t^{\prime}
\end{array}\right]=\text { vertical distance in }} \begin{array}{l}
\text { inches from the preceding joint center of gravity } \\
\text { to the neutral axis of fracture section. }
\end{array}\right.
\end{aligned}
$$

Then $d^{\prime}=e+b=$ vertical distance in inches from center of gravity of upper rectangle to neutral axis of fracture section.
$d^{\prime \prime}=d^{\prime}+\frac{t^{\prime \prime}}{6}=$ vertical distance from center of gravity of combined upper rectangle and both triangles to neutral axis of fracture section.
$d^{\prime \prime \prime}=\frac{t}{2}-d^{\prime} \quad=$ vertical distance in inches from center of gravity of lower rectangle to neutral axis of section.
Then $I^{\prime}=\frac{k t^{\prime \prime 3}}{12}+k t^{\prime \prime} d^{\prime 2}=$ moment of inertia of upper rectangle about the neutral axis.
$I^{\prime \prime}=\frac{n k t^{\prime \prime} 3^{3}}{18}+n k t^{\prime \prime} d^{\prime \prime 2}=$ moment of inertia of combined triangles about the neutral axis.
$I^{\prime \prime \prime}=\frac{(2 n+1)}{12} k t^{\prime 3}+(2 n+1) k t^{\prime} d^{\prime \prime \prime 2} \quad=$ moment of inertia of lower rectangle about the neutral axis.

Finally, summing these results for moment of inertia of entire section:

$$
\begin{gather*}
\frac{f I}{c}=\frac{f k}{c}\left[\frac{t^{\prime \prime 3}}{12}+t d^{\prime 2}+\frac{n t^{\prime \prime 3}}{18}+n t^{\prime \prime} d^{\prime \prime 2}+\frac{(2 n+1) t^{\prime 3}}{12}+\right. \\
\left.(2 n+1) t^{\prime} d^{\prime \prime \prime 2}\right]= \tag{8}
\end{gather*}
$$

resistance moment of fracture section of a plate with thick edges $=t^{\prime}$.

IX. Method of Approximation

As cast-iron plates are generally made with thick edges, the practical application of the last formula is quite tedious. In order to apply it, it becomes necessary first to assume the thicknesses t, t^{\prime} and $t^{\prime \prime}$, then using the preceding formulas to determine the corresponding safe resistance moment of the fracture section. This process must doubtless be repeated several times before a plate is found which has the required safe moment of resistance of section. Hence the necessity for a simplification of the method by directly obtaining the required values of the thicknesses t, t^{\prime} and $t^{\prime \prime}$, which is accomplished in the following manner.

By the formula for a rectangular fracture section, the values of

$$
\begin{equation*}
\frac{I}{c}=\frac{b t^{2}}{6}=\frac{k t^{2}}{6}(2 n+1) \tag{9}
\end{equation*}
$$

are computed for $n=0, n=1, n=2, n=3, n=4, n=5$, and these values lie in a straight line, when they are plotted as in the uppermost line in Fig. 15.

By formula (7) for tapered plates with sharp edges, are next computed the values of $\frac{I}{c}$ corresponding to $n=0, n=1, n=2, n=3$, $n=4$, and $n=5$. These values are then plotted in Fig. 15, forming the slightly curved and dotted line, next to the lower straight line. Joining the ends of the curve by the straight full line, this is found to almost coincide with the curved line, for which it may be substituted with a slight error on the safe side.

Similarly for $n=5$ only, $\frac{I}{c}$ is computed for edge thickness $t^{\prime}=$ $0.1 t, 0.2 t, 0.3 t, 0.4 t, 0.5 t, 0.6 t, 0.7 t, 0.8 t$, and $0.9 t$. These values are laid off on the vertical for $n=5$, and straight radial lines are drawn to these points in Fig. 15. The corresponding per cents of resistance may then be easily computed for $n=5$, as written in Fig. 15 , and which signify that the resistance moment of a tapered fracture section is a certa:n per cent of that of a rectangular section of equal thickness, only for $n=5$.

It now remains to determine this per cent for any other value of n.

The graphical table in Fig. 16 is readily computed and plotted from the data obtained in Fig. 15. It is used as follows:

Let $@=$ per cent of resistance moment of a rectangular fracture section, which is possessed by a tapered section with the same thickness t and the same value of n.

Example 1. Let $t^{\prime}=0.3 t=$ edge thickness and $n=2$.
A vertical through 2 in Fig. 16 intersects the curve 0.3 on a horizontal through 70.5 at the left, which is the required per cent.

Fig. 16
Example 2. Let $t^{\prime}=2.5$ and $n=3.5$.
A vertical through 3.5 intersects the interpolated curve 2.5 on a horizontal through 70.2 at the left, the required per cent.

It is further evident that the actual thickness t of a tapered plate must be somewhat greater than that of a plate of uniform thickness, when both are required to possess equal resistance moments.

The general formula for base plates is:

$$
t=\sqrt{\frac{3 P}{f B}\left(L^{\prime}-L^{\prime \prime}\right)}=
$$

thickness in inches for a plate of uniform thickness.
Or

$$
\begin{equation*}
t=\frac{1}{50} \sqrt{\frac{3 P}{B}\left(L^{\prime}-L^{\prime \prime}\right)}= \tag{10}
\end{equation*}
$$

Let $@=$ per cent corresponding to $\frac{t^{\prime}}{t}$ and n, found by table (Fig. 16)
Then for cast iron,

$$
t=\sqrt{\frac{100}{(\infty)}} \frac{1}{50} \sqrt{\frac{3 P}{B}\left(L^{\prime}-L^{\prime \prime}\right)}=\text { required }
$$

thickness t under the column for a tapered cast-iron plate, possessing a resistance moment equal to that of a plate of uniform thickness t determined by formula 11.

X. Complete Formulas for Plates of Uniform Thickness

By equating the resultant bending and safe resistant moments acting about the neutral axis of the fracture section of the plate, the following general formulas are obtained:

The primary formula is:

$$
\begin{equation*}
M=\frac{P}{2}\left(L^{\prime}-L^{\prime \prime}\right)=R=\frac{f I}{c} . \tag{13}
\end{equation*}
$$

(a) Bearing plate on wall (Fig. 17)

Fig. 17
Let $d=$ width in inches of the plate, usually equal to the thickness of the wall.
Then

$$
\frac{P}{2}\left(L^{\prime}-L^{\prime \prime}\right)=\frac{f d t^{2}}{6}
$$

Or

$$
\begin{equation*}
\frac{P n k}{4}=\frac{f d t^{2}}{6} \tag{14}
\end{equation*}
$$

Hence $t=\sqrt{\frac{3 P n k}{2 f d}}=$ thickness of the plate in inches.

$$
\begin{equation*}
\text { And } t=\frac{1}{103.3} \sqrt{\frac{P n k}{d}}=\text { thickness in inches of a steel plate. } \tag{15}
\end{equation*}
$$

$$
t=\frac{1}{44.7} \sqrt{\frac{P n k}{d}}=\text { thickness of cast-iron plate, } f=3000 \mathrm{lb} \text {. }
$$

$$
t=\frac{1}{40.8} \sqrt{\frac{P n k}{d}}=\text { thickness of cast-iron plate, } f=2500 \mathrm{lb}
$$

If a square or cylindrical column stands on the bear:ng plate instead of the end of a beam resting thereon, $L^{\prime \prime}$ is to be found and then inserted in the general formula, by which t may then be found. (Sec. VII). The general formulas then become:

$$
\begin{gather*}
t=\frac{1}{103.3} \sqrt{\frac{P}{d}\left(\frac{n k}{2}+\frac{k}{4}-L^{\prime \prime}\right)=} \\
\text { thickness for steel plate. } \tag{18}
\end{gather*}
$$

$$
\begin{align*}
t=\frac{1}{44.7} \sqrt{\frac{P}{d}\left(\frac{n k}{2}+\frac{k}{4}-L^{\prime \prime}\right)=} \\
\text { thickness for cast-iron, } f=3000 \mathrm{lb} . \tag{19}
\end{align*}
$$

$$
\begin{align*}
t=\frac{1}{40.8} & \sqrt{\frac{P}{d}\left(\frac{n k}{2}+\frac{k}{4}-L^{\prime \prime}\right)=} \\
& \text { thickness for cast-iron, } f=2500 \mathrm{lb} . \tag{20}
\end{align*}
$$

Formulas 16, 17, 19 and 20 are also applicable to cast-iron bearing plates tapered in thickness from beam or column to each end, since the fracture section always remains rectangular in form.
(b) Square plate (Fig. 18)

Let $S=$ side of square plate in inches.
Then $t=\sqrt{\frac{3 P}{f^{\prime} S}\left(\frac{S}{4}-L^{\prime \prime}\right)}=$ thickness of plate in inches.

$$
t=\frac{1}{73} \sqrt{\frac{P}{S}\left(\frac{S}{4}-L^{\prime \prime}\right)}=
$$

thickness of steel plate in inches.
$t=\frac{1}{31.6} \sqrt{\frac{P}{S}\left(\frac{S}{4}-L^{\prime \prime}\right)}=$
thickness for cast-iron, $f=3000 \mathrm{lb}$.
$t=\frac{1}{28.9} \sqrt{\frac{P}{S}\left(\frac{S}{4}-L^{\prime \prime}\right)}=$
thickness for cast-iron, $f=2500 \mathrm{lb}$.
(c) Octagonal plate (Fig. 19)

Let $D=$ inscribed diameter of octagon.

$$
\begin{align*}
L^{\prime} & =.2187 D \\
t & =\sqrt{\frac{3 P}{f D}\left(.2187 D-L^{\prime \prime}\right)}= \\
t & =\frac{1}{73} \sqrt{\frac{P}{D}\left(.2187 D-L^{\prime \prime}\right)}= \tag{25}\\
t & =\frac{1}{31.6} \sqrt{\frac{P}{D}\left(.2187 D-L^{\prime \prime}\right)}=
\end{align*}
$$

thickness of cast-iron p.ate, $f=3000 \mathrm{lb}$.

$$
\begin{align*}
t=\frac{1}{28.9} \sqrt{\frac{P}{D}\left(.2187 D-L^{\prime \prime}\right)} & = \\
& \text { thickness of cast-iron plate, } f=2500 \mathrm{lb} . \tag{28}
\end{align*}
$$

(d) Circular plate (Fig. 20)

Fig. 20

Let $D=$ diameter of the plate in inches.

$$
\begin{align*}
& L^{\prime}=.2122 D . \\
& t=\sqrt{\frac{3 P}{f^{\prime} D}\left(.2122 D-L^{\prime \prime}\right)}= \\
& t=\frac{1}{73} \sqrt{\frac{P}{D}\left(.2122 D-L^{\prime \prime}\right)}= \tag{29}\\
& t=\frac{1}{31.6} \sqrt{\frac{P}{\text { thickness of the plate. }} \begin{array}{l}
\text { thickness for steel plate. }
\end{array}} \begin{aligned}
& \text { thickness for cast-iron, } f=3000 \mathrm{lb} \\
&=\frac{1}{28.9} \sqrt{\frac{P}{D}\left(.2122 D-L^{\prime \prime}\right)}= \\
& \text { thickness for cast-iron, } f=2500 \mathrm{lb} .
\end{aligned} \\
&\left.t=L^{\prime \prime}\right) \tag{30}
\end{align*}
$$

XI. For Plates of Tapered Thickness

These comprise all cast-iron base plates, which are always made thinner at their edges for the sake of economy: Bearing plates of cast iron set on walls, however, have a rectangular fracture section, for which direct formulas have already been given. (Formulas 16, 17, 19, 20.)

The thickness required at the middle of a tapered cast-iron plate may now be easily found.

1. Compute the thickness for a rectangular fracture section.
2. Assume the desired ratio $\frac{t^{\prime}}{t}$ of thickness at edge and middle.
3. By the table, Fig. 16, determine the per cent @ of its resistance in comparison with a plate of rectangular section of equal width and thickness.
4. By formula 12 compute the required actual thickness t at the middle of the plate. Then t^{\prime} is easily found.

Example. A hollow cylindrical cast-iron column has an external diameter of 6 in., is $3 / 4-\mathrm{in}$. thick and transmits a load of 60000 lb . to the plate. Required the safe dimensions of a square cast-iron baseplate ; fiber stress 2500 lb . per sq. in. ; ratio $\frac{t^{\prime}}{t}=0.15$.; safe resistance of masonry under plate $=125 \mathrm{lb}$. per sq. in.

$$
\begin{aligned}
& \sqrt{\frac{60000}{125}}=21.91 \mathrm{in} .=\text { side of plate required. } \\
& n k=\frac{21.91-6 .}{2}=7.96 ; n=\frac{7.96}{6.00}=1.33
\end{aligned}
$$

For this column, $R=3.00, r=2.25 ; \frac{r}{R}=0.75$.
By the table, Fig. 12, $L^{\prime \prime}=0.56, R=1.68$ in.
By formula 24,

$$
t=\frac{1}{28.9} \sqrt{\frac{60000}{21.91}\left(\frac{21.91}{4}-1.68\right)}=3.53 \mathrm{in} .
$$

By the table, Fig. 16, for $\frac{t^{\prime}}{t}=0.15$ and $n=1.33$, @ $=71$ per cent. By formula 12,
$t=\sqrt{\frac{100}{71}} \times 3.53=4.19 \mathrm{in} .=$ the required middle thickness,
And $4.19 \times 0.15=0.63 \mathrm{in} .=$ thickness at the edge of the plate.

XII. Graphical Tables

It is evident from the example just worked out, that the calculations required for any particular base plate are quite simple and rapid, particularly if 4 -place logarithms are employed. It is, however, entirely possible to devise a series of graphical tables for materially reducing this labor, thus saving valuable time and lessening liability to errors.

XIII. Table for Dimensions of Base Plates

Fig. 21 is a graphical table for determining by inspection the side of a square, or the diameter of an octagonal or round plate, required to safely transmit loads not exceeding 200 tons (400000 lb .), allowing safe pressures of the plate on masonry between 50 and 250 lb . per sq. in. Fig. 22 is merely an enlarged portion of the same table for loads not exceeding 20 tons.

By the use of the upper scale corresponding to the shape of the plate, it is possible to employ this single table for square, octagonal and circular plates, by reading the required side or diameter on the proper scale.

Example. A plate is required to safely transmit a load of 100 tons, allowing a safe pressure of 125 lb . per sq. in. on the masonry beneath it.

Locating the intersection of a horizontal through 100 tons with the curve for 125 lb ., and following a vertical through this point to the respective scales at the top of the table, we read the following values:
$40.0 \mathrm{in} .=$ side of a square plate required.
$42.0 \mathrm{in} .=$ diameter of an octagonal plate.
$45.0 \mathrm{in} .=$ diameter of a circular plate.

Pressures intermediate between the given curves can be easily located with sufficient accuracy.

$$
\text { XIV. Table For the Factor } \sqrt{\frac{3 P}{B}}
$$

The general formula for a plate of uniform thickness is

$$
\begin{equation*}
t=\sqrt{\frac{3 P}{f^{\prime} B}} \quad\left(L^{\prime}-L^{\prime \prime}\right)=\text { thickness in inches. } \tag{10}
\end{equation*}
$$

This may be factored in the form

$$
t=\sqrt{\frac{3 P}{B}} \times \sqrt{\frac{L^{\prime}-L^{\prime \prime}}{f}}=\text { thickness in inches. }
$$

Fig. 23 exhibits the relations of the three quantities
$P=$ total load in tons transmitted by the plate.
$B=$ length in inches of the fracture section.
$\sqrt{\frac{3 P}{B}}=$ one factor in the last formula.

Example. Take the square plate in the last example. $P=100$ tons, $B=40.0 \mathrm{in}$. The intersection of a horizontal through 100 tons with the curve for 40.0 in ., and a vertical through this point gives at the top of the table $\sqrt{\frac{3 P}{B}}=122.5$.

Assume that a $12-\mathrm{in}$. cylindrical cast-iron column with $11 / 4-\mathrm{in}$. metal stands on this base plate.

Then $\quad \frac{r}{R}=\frac{4.75}{6.00}=0.79$, and by the table in Fig. 12:

$$
L^{\prime \prime}=.572 \times 6.00=3.43 \mathrm{in} . ; L^{\prime}=\frac{40}{4}=10.0 \mathrm{in}
$$

Hence

$$
L^{\prime}-L^{\prime \prime}=10.0-3.43=6.57 \mathrm{in} .
$$

XV. Tables for Plates of Uniform Thickness

The table in Fig. 24 exhibits the relations of the three quantities: $\sqrt{\frac{3 P}{B}}=$ the factor whose value has just been found from Fig. 23. $L^{\prime}-L^{\prime \prime}=$ difference in lever arms of the upward and downward bending moments.
$t=$ thickness in inches represented by curved lines in the table.
In designing the tables in Fig. 24 and 25, the factor $\sqrt{\frac{L^{\prime}-L^{\prime \prime}}{f^{\prime}}}$ is actually employed, but the device of separate vertical scales for the different values of f makes the table more convenient for use.

Resuming the last example and employing the table Fig. 24, a vertical through 122.5 at the top intersects a horizontal through 6.57 at the left, giving by estimation between the nearest curves the following values for t.

$$
\begin{aligned}
& t=2^{1 / 2} \text { in. for a steel plate. } \\
& t=2^{13 /} 16 \text { in. for a wrought-iron plate. }
\end{aligned}
$$

Employing the table, Fig. 25, in the same manner for cast-iron plate of uniform thickness:
$t=53 / 4 \mathrm{in}$. for fiber stress of 3000 lb . per sq. in.
$t=6 \frac{5}{16} \mathrm{in}$. for fiber stress of 2500 lb . per sq. in.
Assuming 0.20 for the ratio $\frac{t^{\prime}}{t}$, and $n=1.17$, by the table, Fig. 16 , $@=72.5$ per cent.

By formula 12 ,
$t=\sqrt{\frac{100}{72.5}} \times 5.75=6.76 \mathrm{in}$. at middle for $f=3000 \mathrm{lb}$. per sq. in.
$t=\sqrt{\frac{100}{72.5}} \times 6.31=7.41 \mathrm{in}$. at middle for $f=2500 \mathrm{lb}$. per sq. in.
Then $6.76 \times 0.2=1.35 \mathrm{in}$., and $7.41 \times 0.2=1.48$ in., the respective thicknesses at the edges required.

It will be seen that Fig. 24 contains two vertical scales, one for steel with fiber stress of 16000 lb . per sq. in. and the other for wrought iron with fiber stress of 12000 lb . per sq. in. Fig. 25 likewise has two vertical scales corresponding to fiber stresses of 3000 lb . and 2500 lb . per sq. in.
Factor $\sqrt{\frac{3 P}{B}}$

XVI. Additional Examples of the Use of the Tables
I. A bearing plate is 12 in. wide and rests on a 13 -in. wall; it supports a load of 15 tons (30000 lb .) transmitted by the end of a girder 12 in . wide. Safe pressure of plate on masonry $=100 \mathrm{lb}$. per sq. in. Safe fiber stress for cast iron $=2500 \mathrm{lb}$. per sq. in. Required its thickness.

$$
\frac{15 \times 2000}{100 \times 12}=25.0 \text { in. }=\text { length of the plate }
$$

$n k=\frac{25-12}{2}=6.5 \mathrm{in} .=$ projection of end beyond side of girder;
By formula 17,

$$
t=\frac{1}{40.8} \sqrt{\frac{P n k}{d}}=\frac{1}{40.8} \sqrt{\frac{30000 \times 6.5}{12.0}}=
$$

3.12 in., the thickness beneath the girder. The plate may be tapered from the girder to any desired thickness at its ends without danger, since its fracture section is always rectangular.

If the safe fiber stress be taken $=3000 \mathrm{lb}$. per sq. in.;

$$
t=\frac{40.8 \times 3.12}{44.7}=2.85 \mathrm{in} ., \text { say, } 27 / 8 \mathrm{in} .
$$

Or by the table: Fig. 21, a plate 17.25 in. square would be required.

Hence, length

$$
\frac{(17.25)^{2}}{12}=25.0 \text { in., as before. }
$$

Also by the table, Fig. 23, the factor $\sqrt{\frac{3 P}{B}}=86.0$.

$$
\begin{gathered}
L^{\prime}=\frac{25.0}{4}=6.25 ; L^{\prime \prime}=\frac{12.0}{4}=3.00 \\
L^{\prime}-L^{\prime \prime}=6.25-3.00=3.25 \mathrm{in} .
\end{gathered}
$$

By the table, Fig. 25, $t=31 / 8 \mathrm{in}$. as before.
Therefore, the graphical tables may also be used for bearing and wall plates.
2. A square base plate transmits a load of 50 tons to masonry with a safe resistance of 150 lb . per sq. in. Safe fiber stress 3000 lb . per sq. in. A column 7 in. external diameter and 1 in . thickness of metal stands on this plate.

By the table, Fig. 21, 22.7 in . $=$ side of plate, and $n=1.12$.
By the table, Fig. 23, $\sqrt{\frac{3 P}{B}}=114.5$.

$$
L^{\prime}=5.68 \text { in. } ; L^{\prime \prime}=1.91 \mathrm{in.} \text { by Fig. 12. } L^{\prime}-L^{\prime \prime}=3.76 \mathrm{in} .
$$

By the table, Fig. 25, $t=3{ }^{5} /{ }_{16} \mathrm{in}$. $=3.31 \mathrm{in}$.
Assuming $\frac{t^{\prime}}{t}=0.25$, which is a commonly employed ratio, and $n=1.12, @=73.5$ by the table in Fig. 16.

By formula 12,

$$
\begin{aligned}
& t= \sqrt{\frac{100}{73.5}} \times 3.31=3.86 \mathrm{in} .=\text { thickness at middle, and } \\
& \\
& \mathrm{t}^{\prime}=3.86 \times 0.25=0.97 \mathrm{in} . \text { thickness at edges }
\end{aligned}
$$

3. A circular base plate transmits a load of 175 tons to masonry with a safe resistance of 175 lb . per sq. in. A column of metal 12 in . in diameter and $11 / 4$ in. thick stands on this plate.

By the table, Fig. 21, 50.5 in. $=$ diameter of the plate $; n=1.60$.
By the table. Fig. 23, $\sqrt{\frac{3 P}{B}}=144$. Also $L^{\prime}-L^{\prime \prime}=7.29$ in.
By the table, Fig. 24, $t=3.10 \mathrm{in}$. for a steel plate.
$t=3.50 \mathrm{in}$. for a wrought-iron plate.
By the table, Fig. 25, $t=7.05 \mathrm{in}$. for cast-iron plate, $f=3000 \mathrm{lb}$. per sq. in.
$t=7.75 \mathrm{in}$. for cast-iron plate, $f=2500 \mathrm{lb}$. per sq. in.

Assuming
$\frac{t^{\prime}}{t}=0.25$, and as $n=1.60$, by the table, Fig. $16, @=71.0$.

Then

$$
\begin{gathered}
t=7.05 \times \sqrt{\frac{100}{71}}=8.37 \mathrm{in} .=\text { thickness beneath column, } f=3000 \mathrm{lb} \\
t=7.75 \times \sqrt{\frac{100}{71}}=9.20 \mathrm{in} .=\text { same, for } f=2500 \mathrm{lb}
\end{gathered}
$$

Therefore
$t^{\prime}=2.09 \mathrm{in}$. in the first case and 2.30 in. in the second.
4. Assume that in the last case the plate is to be square and that the safe resistance of the masonry is but 90 lb . per sq. in.

In the same manner as before, we easily find:
Side of plate $=62.2$ in. ; $n=2.09$.
Factor $\sqrt{\frac{3 \bar{P}}{B}}=130$
$t=35 / 8 \mathrm{in}$. for a steel plate
$t=43 / 4$ in. for a wrought-iron plate
$t=83 / 8 \mathrm{in}$. for cast-iron plate, $f=3000 \mathrm{lb}$.
$t=9 \mathrm{I} / 8 \mathrm{in}$. for same with $f=2500 \mathrm{lb}$.
Assuming $\frac{t^{\prime}}{t}=0.25$, and for $n=2.09$; $@=69.5$.
Then $t=10.00$ in. thickness at middle in the first case and $=10.95$ in the second. The corresponding values for t^{\prime} are 2.50 and 2.74 inches.
5. A built steel column is composed of two 15-in. channels, one 15-in. I, and two $16 \times 3 / 4$-in. plates. It stands on a circular cast-iron base plate, which rests directly on a cylindrical sunken foundation pier of portland cement concrete, to which the plate transmits a load of 500 tons (1000000 lb .) Maximum safe fiber stress in cast iron is taken at 2500 lb . per sq. in. Safe resistance of the concrete pier is 175 lb . per sq. in. Let $\frac{t^{\prime}}{t}=0.20$.

Required least safe diameter and thickness of the cast-iron plate.
In this case, $\frac{1000000}{175}=5714.3$ sq. in., area of plate.

$$
\mathrm{d}=\sqrt{\frac{5714}{.7854}}=85.3 \mathrm{in} .=\text { diameter of the plate } ; n=2.17
$$

By formula Sec. VII, $L^{\prime}=85.3 \times 0.2122=18.1 \mathrm{in}$.

Fig. 26
For the given cross section of the steel column, Fig. 26, there may readily be found by the usual graphical methods:

$$
\begin{aligned}
& L^{\prime \prime}=5.84 \mathrm{in} . \text { about the axis } C D . \\
& L^{\prime \prime}=3.78 \mathrm{in} . \text { about the axis } A B .
\end{aligned}
$$

Taking the smaller of these values and applying formula 32,

$$
\begin{aligned}
& t=\frac{1}{28.9} \sqrt{\frac{P}{B}\left(L^{\prime}-L^{\prime \prime}\right)}=\frac{1}{28.9} \times \\
& \sqrt{\frac{1000000}{85.3}(18.10-3.78)}=14.18 \mathrm{in} .
\end{aligned}
$$

Assuming $\frac{t^{\prime}}{t}=0.20$, and for $n=2.17$, by table in Fig. 16,

$$
@=68.0
$$

Then $t=\sqrt{\frac{100}{68.0}} \times 14.18=17.20 \mathrm{in} .=$ thickness under column, and $t^{\prime}=17.2 \times 0.20=3.44 \mathrm{in} .=$ thickness at edge of plate.

Such a solid plate would be more simple and more easily set in place, and it might also be cheaper than the usual arrangement consisting of a cast-iron ribbed base plate or stool above a layer of short
steel 15 -inch I-beams, which are set on the top of the concrete pier. This pier would also here require to be not less than 8 ft .6 in . in diameter at the top.

These examples show that simple formulas and tables have been here devised, making the calculation of safe plain bearing and base plates a very simple matter.

Publications of The Engineering Experiment Station

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print).
Circular No. I. High-Speed Tool Steels, by L. P. Breckenridge. 1905. (Out of frint).
Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905. (Out of prist).
Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. (Out of print).
Circular No. 3. Fuel Tests with Illinois Coal. (Compiled from tests made by the Tech nologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907, by L. P. Breckenridge and Paul Diserens.) 1909.
Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print).

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906. (Out of print).

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906. (Out of print).

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906. (Out of print).

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906. (Out of print).

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industrics, by L. P. Breckenridge and G. A. Goodenough, 1906.

Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. (Out of print).

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletir No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletir No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge, 1908.
Bulletin No. I6. A Study of Roof Trusses, by N, Clifford Ricker, 1908.
Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton and W. F. Wheeler. 1908. (Out of print).

Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore. 1908.

Bulletin No. 19. Comparative Tests of Carbon, Metalized Carbon and Tantalum Filament Lamps, by T. H. Amrine. 1908. (Out of print).

Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908. (Out of print).

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1908. Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908.

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908.
Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation, by S. W. Parr and C. K. Francis. 1908.

Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine. 1908.

Bulletin No. 26. High Steam-Pressures in Locomottve Service, A Review of a Report to the Carnegie Institution of Washington. By W. F. M. Goss. 1908.

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909.

Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909.

Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, by Arthur N. Talbot. 1909.

Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams and C. N. Haskins. 1909.

Bulletin No. 31. Fuel Tests with House-heating Boilers, by J. M. Snodgrass 1909.
Bulletin No. 32. Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909.
Bulletin No. 33. Steam Boiler Furnace Trials of Washed Grades of Illinois Coal, by C.
S. McGovney. 1909.

Bulletin No. 34. Tests of Two Types of Tile Roof Furnaces under a Water-tube Boiler, by J. M. Snodgrass. 1909.

Bulletin No. 35. A Study of Base and Bearing Plates for Columns and Beams, by N. Clifford Ricker. 1909.

THIS BOOK IS DUE ON THE LAST DATE AN INITIAI FINE OE 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN WILL INCREASE THE DATE DUE. THE PENALTY DAY AND TO $\$ 1.00$ CENTS ON THE FOURTH OVERDUE. \$1.00 ON THE SEVENTH DAY MAY 161943
(Ancient and ical and PolitiCommerce and a shops. Grade; Architectural vil Engineering; cal Engineering;
tany, Chemistry, Zoology).
dimal Husbandry, e, Veterinary Sci).
Physicians and Sur'hree years' course). Music (Voice, e, pharmacy, ENGINEERING e weeks is open each he University for in, connected with the anizations for educaAandolin Clubs, Literes and Clubs, Young (ssociations).
State Laboratory of ent Station on Illinois ogical Survey. A department organized LD $21-100 \mathrm{~m}-7,{ }^{\prime} 40(6936 \mathrm{~s})$ e to the engineering and to investugail
manufacturing interests or 1 rec
The Library containg 122,000 volumes, and 14,000 pamphlets.
The University offert 526 Free Echolarships.
For catalogs and information address
W. L. PILLSBURY, Registrar,

Urbana, Illinois.
niv. of Illinois. I35 Engineofing oxperiment v. 35 tation. Bulletin.

